
Definition 12.1 

~ 12.1 Some Problems that Cannot Be Solved by Turing Machines 317 

The Turing Machine Halting Problem 

We begin with some problems that have some historical significance 
and that at the same time give us a starting point for developing later 
results. The best-known of these is the Turing machine halting problem. 
Simply stated, the problem is: given the description of a Turing machine M 

and an input w, does M, when started in the initial configuration qow, 
perform a computation that eventually halts? Using an abbreviated way 
of talking about the problem, we ask whether M applied to w, or simply 
(M, w), halts or does not halt. The domain of this problem is to be taken as 
the set of all Turing machines and all w; that is, we are looking for a single 
Turing machine that, given the description of an arbitrary M and w, will 
predict whether or not the computation of M applied to w will halt. 

We cannot find the answer by simulating the action of M on w, say by 
performing it on a universal Turing machine, because there is no limit on 
the length of the computation. If M enters an infinite loop, then no matter 
how long we wait, we can never be sure that M is in fact in a loop. It may 
simply be a case of a very long computation. What we need is an algorithm 
that can determine the correct answer for any M and w by performing some 
analysis on the machine's description and the input. But as we now show, 
no such algorithm exists. 

For subsequent discussion, it is convenient to have a precise idea what 
we mean by the halting problem; for this reason, we make a specific defini­
tion of what we stated somewhat loosely above. 

Let WM describe a Turing machine M = (Q, I, r, 0, qo, 0, F), and 
let w be any element of I +, A solution of the halting problem is a Tur­
ing machine H, which for any WM and w, performs the computation 



318 

Theorem 12.1 

Figure 12.1 

~ 12 Limits of Algorithmic Computation 

if M applied to w halts, and 

if M applied to w does not halt. Here qy and qn are both final states of H. 

There does not exist any Turing machine H that behaves as required by 
Definition 12.1. The halting problem is therefore undecidable. 

Proof: We assume the contrary, namely that there exists an algorithm, 
and consequently some Turing machine H, that solves the halting problem. 
The input to H will be the description (encoded in some form) of M, say 
WM, as well as the input w. The requirement is then that, given any (WM' w), 

the Turing machine H will halt with either a yes or no answer. We achieve 
this by asking that H halt in one of two corresponding final states, say, qy or 
qn' The situation can be visualized by a block diagram like Figure 12.1. The 
intent of this diagram is to indicate that, if M is started in state qo with input 
(WM, w), it will eventually halt in state qy or qn' As required by Definition 
12.1, we want H to operate according to the following rules: 

if M applied to W halts, and 

if M applied to W does not halt. 



Figure 12.2 

~ 12.1 Some Problems that Cannot Be Solved by Turing Machines 319 

Next, we modify H to produce a Turing machine H' with the structure 
shown in Figure 12.2. With the added states in Figure 12.2 we want to 
convey that the transitions between state qy and the new states qa and qb are 
to be made, regardless of the tape symbol, in such a way that the tape 
remains unchanged. The way this is done is straightforward. Comparing H 
and H' we see that, in situations where H reaches qy and halts, the modified 
machine H' will enter an infinite loop. Formally, the action of H' is de­
scribed by 

if M applied to w halts, and 

if M applied to w does not halt. 
From H' we construct another Turing machine fl. This new machine 

takes as input WM, copies it, and then behaves exactly like H'. Then the 
action of fl is such that 

if M applied to WM halts, and 

if M applied to WM does not halt. 



320 ~ 12 Limits of Algorithmic Computation 

Now II is a Turing machine, so that it will have some description in I * , 
say w. This string, in addition to being the description of II can also be used 
as input string. We can therefore legitimately ask what would happen if II is 
applied to w. From the above, identifying M with II, we get 

if II applied to w halts, and 

if II applied to w does not halt. This is clearly nonsense. The contradiction 
tells us that our assumption of the existence of H, and hence the assump­
tion of the decidability of the halting problem, must be false .• 

One may object to Definition 12.1, since we required that, to solve the 
halting problem, H had to start and end in very specific configurations. It is, 
however, not hard to see that these somewhat arbitrarily chosen conditions 
play only a minor role in the argument, and that essentially the same 
reasoning could be used with any other starting and ending configurations. 
We have tied the problem to a specific definition for the sake of the discus­
sion, but this does not affect the conclusion. 

It is important to keep in mind what Theorem 12.1 says. It does not 
preclude solving the halting problem for specific cases; often we can tell by 
an analysis of M and w whether or not the Turing machine will halt. What 
the theorem says is that this cannot always be done; there is no algorithm 
that can make a correct decision for all WM and w. 

The arguments for proving Theorem 12.1 were given because they are 
classical and of historical interest. The conclusion of the theorem is actu­
ally implied in previous results as the following argument shows. 


	Peter_Linz_HP(Pages_315-320)_Page_3
	Peter_Linz_HP(Pages_315-320)_Page_4
	Peter_Linz_HP(Pages_315-320)_Page_5
	Peter_Linz_HP(Pages_315-320)_Page_6

