if M applied to w halts, and

 $q_0 w_M w \models^* y_1 q_n y_2,$

if M applied to w does not halt. Here q_y and q_n are both final states of H.

Theorem 12.1

There does not exist any Turing machine H that behaves as required by Definition 12.1. The halting problem is therefore undecidable.

Proof: We assume the contrary, namely that there exists an algorithm, and consequently some Turing machine H, that solves the halting problem. The input to H will be the description (encoded in some form) of M, say w_M , as well as the input w. The requirement is then that, given any (w_M, w) , the Turing machine H will halt with either a yes or no answer. We achieve this by asking that H halt in one of two corresponding final states, say, q_y or q_n . The situation can be visualized by a block diagram like Figure 12.1. The intent of this diagram is to indicate that, if M is started in state q_0 with input (w_M, w) , it will eventually halt in state q_y or q_n . As required by Definition 12.1, we want H to operate according to the following rules:

$$q_0 w_M w \models H x_1 q_y x_2,$$

if M applied to w halts, and

 $q_0 w_M w \models^* H y_1 q_n y_2,$

if M applied to w does not halt.

Figure 12.1

Figure 12.2

Next, we modify H to produce a Turing machine H' with the structure shown in Figure 12.2. With the added states in Figure 12.2 we want to convey that the transitions between state q_y and the new states q_a and q_b are to be made, regardless of the tape symbol, in such a way that the tape remains unchanged. The way this is done is straightforward. Comparing Hand H' we see that, in situations where H reaches q_y and halts, the modified machine H' will enter an infinite loop. Formally, the action of H' is described by

$$q_0 w_M w \models_{H'} \infty$$

if M applied to w halts, and

$$q_0 w_M w \models_{H'} y_1 q_n y_2,$$

if M applied to w does not halt.

From H' we construct another Turing machine \hat{H} . This new machine takes as input w_M , copies it, and then behaves exactly like H'. Then the action of \hat{H} is such that

$$q_0 w_M \models^* _{\hat{H}} q_0 w_M w_M \models^* _{\hat{H}} \infty,$$

if M applied to w_M halts, and

$$q_0 w_M \stackrel{*}{\models} \hat{H} q_0 w_M w_M \stackrel{*}{\models} \hat{H} y_1 q_n y_2,$$

if M applied to w_M does not halt.