
Halting problem undecidability and infinitely nested simulation

When input P to simulating halt decider H has the pathological self-reference error (PSRE)
simulating halt decider H decides this input P on the basis of proxy input P2 that has the
pathological self-reference error removed.

void H_Hat(u32 P)
{
 u32 Input_Halts = Halts(P, P);
 if (Input_Halts)
 HERE: goto HERE;
}

The pathological self-reference error arises in the halting theorem from the fact that
neither return values: {0, 1} from Halts() to H_Hat() repesent the actual halting behavior
of H_Hat() in the computation: Halts((u32)H_Hat, (u32)H_Hat);

When we define H_Hat2() by replacing the call to Halts() with a call to Simulate()

u32 Simulate(u32 P, u32 I)
{
 ((void(*)(int))P)(I);
 return 1;
}

H_Hat2() never halts on its own machine address as input.
This key fact is leveraged to correctly decide halting: Halts((u32)H_Hat, (u32)H_Hat);

We hypothesize that input P having the pathological self-reference error (PSRE) can be
substituted for equivalent proxy input P2 such that the halting status of P2 derives the halting
status of P. If this hypothesis is correct it becomes the basis for refuting the halting theorem.

To put this in concrete terms if Halts((u32)H_Hat2, (u32)H_Hat2); provides the correct
halting value for Halts((u32)H_Hat, (u32)H_Hat); then H_Hat becomes a decidable
input. The rest of the proof will attempt to show this.

Generic halt deciding principle for inputs having the pathological self-reference error
Whenever input P has the pathological self-reference error such that a simulating halt decider
H must decide halting on an input that invokes itself we define proxy input P2 copy of P such
that the embedded simulating halt decider is replaced with a simulator.

(a) Simulating halt decider H and simulator S are equivalent computations for all inputs P that
halt. This means that H correctly decides halting on P if and only if P2 halts.

(b) Simulating halt decider H and simulator S are equivalent computations for all inputs P that
do not halt up to the point where H stops simulating P. This means that H correctly decides
not halting on P if and only if P2 does not halt.

In other words: Halts correctly decides not halting on H_Hat because H_Hat2 does not halt.

 ---1--- 2021-05-27 12:06 AM

Peter Linz Ĥ applied to the Turing machine description of itself: [Ĥ]

 Figure 12.3 Turing Machine Ĥ

Ĥ.q0 wM ⊢* Ĥ.qx wM wM ⊢* Ĥ.qy ∞
Ĥ.q0 wM ⊢* Ĥ.qx wM wM ⊢* Ĥ.qn

The above is adapted from (Linz:1990:319).
It shows that Turing machine Ĥ copies its input at (q0) and begins executing an embedded
copy of the original halt decider with this input at (qx).

The (qy) state indicates that the halt decider has determined that its input would halt. The
((qn)) state indicates the input would not halt. The appended (qa) and (qb) states cause Ĥ to
infinitely loop if the halt decider decides that its input would halt.

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D.
C. Heath and Company.

The above definition specifies this execution trace:
It can be understood from the above specification that when the embedded halt decider at
Ĥ.qx bases its halting decision on simulating its input, and it has ([],[])Ĥ Ĥ as its input that:

• Ĥ.q0 would copy its input and then Ĥ.qx would simulate its input with this copy then
• Ĥ.q0 would copy its input and then Ĥ.qx would simulate its input with this copy then

• Ĥ.q0 would copy its input and then Ĥ.qx would simulate its input with this copy...
unless and until the halt decider at Ĥ.qx stops simulating its input.

When we apply the Generic halt deciding principle to the embedded simulating halt decider
at state .qxĤ to its input ([],[])Ĥ Ĥ we find that the simulation of this input must be aborted.

Because the necessity to abort the simulation of an input is equated with this input specifying
an infinite computation the simulating halt decider .qxĤ correctly transitions to its final .qnĤ
state deciding not halting on its input.

The computation ([])Ĥ Ĥ only halts because it contains an otherwise infinitely nested
simulation that has been aborted at state .qxĤ . Because an aspect of the ([])Ĥ Ĥ computation
has been aborted to force the computation to halt we cannot count that fact that ([])Ĥ Ĥ halts
evidence that it is a halting computation.

 ---2--- 2021-05-27 12:06 AM

The simplest way to define a halt decider is to make a program that runs its input to see what
it does. In technical terms this would be a universal Turing machine (UTM) that has been
adapted to become a halt decider.

The UTM would simulate its input and maintain an execution trace of this simulation as a pure
function of this input. The halt decider would be invoked by the UTM immediately after it
simulates each instruction. The halt decider is a pure function of its input execution trace.

This adapted UTM simply simulates the execution of its input until its input halts on its own or
its halt decider determines that its input would never halt on its own and stops simulating it.

The x86utm operating system was created so that halt deciders written in the C programming
language would be computationally equivalent to the execution of actual Turing machines.

These (at least partial) halt deciders base their halting decision on examining the execution
trace of the x86 machine language of their input. The input is the COFF object file output of a
C compiler and is directly executed by the x86 emulator.

void Infinite_Loop()
{
 HERE: goto HERE;
}

_Infinite_Loop()
[00000aaf](01) 55 push ebp
[00000ab0](02) 8bec mov ebp,esp
[00000ab2](02) ebfe jmp 00000ab2
[00000ab4](01) 5d pop ebp
[00000ab5](01) c3 ret
Size in bytes:(0007) [00000ab5]

[infinite_loop] non-halting behavior pattern
(a) The instruction is a JMP instruction.
(b) It is jumping upward or to its own address.
(c) There are no conditional branch instructions in-between.
(d) There are no other JMP instructions in-between (André G. Isaak)

When the [infinite_loop] non-halting behavior pattern of the simulation of _Infinite_Loop()
is matched by the behavior of _Infinite_Loop() the simulating halt decider correctly
decides not-halting on this input.

Begin Local Halt Decider Simulation at Machine Address:aaf
...[00000aaf][002115e2][002115e6](01) 55 push ebp
...[00000ab0][002115e2][002115e6](02) 8bec mov ebp,esp
...[00000ab2][002115e2][002115e6](02) ebfe jmp 00000ab2
...[00000ab2][002115e2][002115e6](02) ebfe jmp 00000ab2
Local Halt Decider: Infinite Loop Detected Simulation Stopped

Every (at least partial) halt decider that decides the halting status of its input on the basis of
its examination of the execution trace of its own simulation of this input would correctly decide
the conventional halting problem undecidability proof counter-examples would not halt.
(see Appendix: Key basis of the {Sipser, Kozen, Linz} halting problem undecidability proofs).

 ---3--- 2021-05-27 12:06 AM

Architectural design of simulating halt decider H
When the behavior of the input P to H
(a) Correctly matches
(b) A correct non-halting behavior pattern
Then H decides non-halting on P correctly.

[infinitely_nested_simulation] non-halting behavior pattern for Halts / H_Hat example:
If the execution trace of function P() [i.e. the input to H] shows:
(a) Partial halt decider H is called twice in sequence from the same machine address of P.
 ("in sequence" means that the block of instructions containing the call to H repeats).
(b) with the same machine address parameters of P to H.
(c) with no conditional branch or indexed jump instructions in P.
Then H correctly decides not halting on P.

void H_Hat(u32 P)
{
 u32 Input_Halts = Halts(P, P);
 if (Input_Halts)
 HERE: goto HERE;
}

int main()
{
 u32 Input_Would_Halt = Halts((u32)H_Hat, (u32)H_Hat);
 Output("Input_Would_Halt = ", Input_Would_Halt);
}

_H_Hat()
[00000b1f](01) 55 push ebp
[00000b20](02) 8bec mov ebp,esp
[00000b22](01) 51 push ecx
[00000b23](03) 8b4508 mov eax,[ebp+08]
[00000b26](01) 50 push eax
[00000b27](03) 8b4d08 mov ecx,[ebp+08]
[00000b2a](01) 51 push ecx
[00000b2b](05) e82ffeffff call 0000095f
[00000b30](03) 83c408 add esp,+08
[00000b33](03) 8945fc mov [ebp-04],eax
[00000b36](04) 837dfc00 cmp dword [ebp-04],+00
[00000b3a](02) 7402 jz 00000b3e
[00000b3c](02) ebfe jmp 00000b3c
[00000b3e](02) 8be5 mov esp,ebp
[00000b40](01) 5d pop ebp
[00000b41](01) c3 ret
Size in bytes:(0035) [00000b41]

 ---4--- 2021-05-27 12:06 AM

_main()
[00000b4f](01) 55 push ebp
[00000b50](02) 8bec mov ebp,esp
[00000b52](01) 51 push ecx
[00000b53](05) 681f0b0000 push 00000b1f
[00000b58](05) 681f0b0000 push 00000b1f
[00000b5d](05) e8fdfdffff call 0000095f
[00000b62](03) 83c408 add esp,+08
[00000b65](03) 8945fc mov [ebp-04],eax
[00000b68](03) 8b45fc mov eax,[ebp-04]
[00000b6b](01) 50 push eax
[00000b6c](05) 682b030000 push 0000032b
[00000b71](05) e8e9f7ffff call 0000035f
[00000b76](03) 83c408 add esp,+08
[00000b79](02) 33c0 xor eax,eax
[00000b7b](02) 8be5 mov esp,ebp
[00000b7d](01) 5d pop ebp
[00000b7e](01) c3 ret
Size in bytes:(0048) [00000b7e]

Columns
(1) Machine address of instruction
(2) Machine address of top of stack
(3) Value of top of stack after instruction executed
(4) Number of bytes of machine code
(5) Machine language bytes
(6) Assembly language text

01.[00000b4f][00101542][00000000](01) 55 push ebp
02.[00000b50][00101542][00000000](02) 8bec mov ebp,esp
03.[00000b52][0010153e][00000000](01) 51 push ecx
04.[00000b53][0010153a][00000b1f](05) 681f0b0000 push 00000b1f
05.[00000b58][00101536][00000b1f](05) 681f0b0000 push 00000b1f
06.[00000b5d][00101532][00000b62](05) e8fdfdffff call 0000095f

Begin Local Halt Decider Simulation at Machine Address:b1f
07.[00000b1f][002115e2][002115e6](01) 55 push ebp
08.[00000b20][002115e2][002115e6](02) 8bec mov ebp,esp
09.[00000b22][002115de][002015b2](01) 51 push ecx
10.[00000b23][002115de][002015b2](03) 8b4508 mov eax,[ebp+08]
11.[00000b26][002115da][00000b1f](01) 50 push eax
12.[00000b27][002115da][00000b1f](03) 8b4d08 mov ecx,[ebp+08]
13.[00000b2a][002115d6][00000b1f](01) 51 push ecx
14.[00000b2b][002115d2][00000b30](05) e82ffeffff call 0000095f

15.[00000b1f][0025c00a][0025c00e](01) 55 push ebp
16.[00000b20][0025c00a][0025c00e](02) 8bec mov ebp,esp
17.[00000b22][0025c006][0024bfda](01) 51 push ecx
18.[00000b23][0025c006][0024bfda](03) 8b4508 mov eax,[ebp+08]
19.[00000b26][0025c002][00000b1f](01) 50 push eax
20.[00000b27][0025c002][00000b1f](03) 8b4d08 mov ecx,[ebp+08]
21.[00000b2a][0025bffe][00000b1f](01) 51 push ecx
22.[00000b2b][0025bffa][00000b30](05) e82ffeffff call 0000095f
Local Halt Decider: Infinitely Nested Simulation Detected Simulation Stopped

 ---5--- 2021-05-27 12:06 AM

(a) Halts is called twice in sequence from the same machine address of H_Hat.
14.[00000b2b][002115d2][00000b30](05) e82ffeffff call 0000095f
22.[00000b2b][0025bffa][00000b30](05) e82ffeffff call 0000095f

(b) With the same machine address of H_Hat parameters to H
 (Pair of push instructions preceding the call to Halts are its input)
11.[00000b26][002115da][00000b1f](01) 50 push eax
13.[00000b2a][002115d6][00000b1f](01) 51 push ecx

19.[00000b26][0025c002][00000b1f](01) 50 push eax
21.[00000b2a][0025bffe][00000b1f](01) 51 push ecx

(c) with no conditional branch or indexed jump instructions in H_Hat
None of the machine instructions from line 07 to line 22 are this type.

[infinitely_nested_simulation] non-halting behavior pattern is matched.

23.[00000b62][0010153e][00000000](03) 83c408 add esp,+08
24.[00000b65][0010153e][00000000](03) 8945fc mov [ebp-04],eax
25.[00000b68][0010153e][00000000](03) 8b45fc mov eax,[ebp-04]
26.[00000b6b][0010153a][00000000](01) 50 push eax
27.[00000b6c][00101536][0000032b](05) 682b030000 push 0000032b
28.[00000b71][00101532][00000b76](05) e8e9f7ffff call 0000035f
Input_Would_Halt = 0
29.[00000b76][0010153e][00000000](03) 83c408 add esp,+08
30.[00000b79][0010153e][00000000](02) 33c0 xor eax,eax
31.[00000b7b][00101542][00000000](02) 8be5 mov esp,ebp
32.[00000b7d][00101546][00100000](01) 5d pop ebp
33.[00000b7e][0010154a][00000080](01) c3 ret
Number_of_User_Instructions(33)
Number of Instructions Executed(26560)

 ---6--- 2021-05-27 12:06 AM

Appendix
Key basis of the {Sipser, Kozen, Linz} halting problem undecidability proofs.

The following code implements the key basis of the {Sipser, Kozen, Linz} halting problem
undecidability proofs:

void H_Hat(u32 P)
{
 u32 Input_Would_Halt = Halts(P, P);
 if (Input_Would_Halt)
 HERE: goto HERE;
}

int main()
{
 u32 Input_Would_Halt = Halts((u32)H_Hat, (u32)H_Hat);
 Output("Input_Would_Halt = ", Input_Would_Halt);
}

In that the input program is defined to "do the opposite of whatever the halt decider decides".
Here are quotes from {Sipser, Kozen, Linz} showing that key basis:

Now we construct a new Turing machine D with H as a subroutine. This new TM calls H to
determine what M does when the input to M is its own description ⟨M⟩.
Once D has determined this information, it does the opposite. (Sipser:1997:165)

Suppose (for a contradiction) that there existed a total machine K accepting the set HP...
• K halts and accepts if M halts on x, and
• K halts and rejects if M loops on x.
Consider a machine N ...
accepting if K rejects and going into a trivial loop if K accepts. (Kozen:1997:233)

...Turing machine H will halt with either a yes or no answer. We achieve this by asking that H
halt in one of two corresponding final states, say, qy or qn...
Next, we modify H to produce a Turing machine H'... in situations where H reaches qy and
halts, the modified machine H' will enter an infinite loop. (Linz:1990:318-319)

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D.
C. Heath and Company. (315-320)

Sipser, Michael 1997. Introduction to the Theory of Computation. Boston: PWS Publishing
Company (165-167)

Kozen, Dexter 1997. Automata and Computability. New York: Springer-Verlag. (231-234).

Copyright 2021 PL Olcott

 ---7--- 2021-05-27 12:06 AM

